Electrical

CODE

07

11

14

17

21

Screening Code

SPECIFICATIONS

В

CODE

08

12

15

18

22

Features

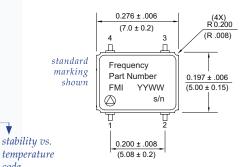
S

09

13

16

19


23

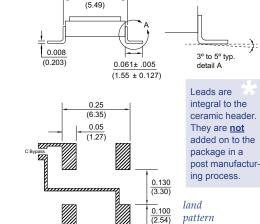
SERIES, Commercial Space
50 KRad/Si TID min. | 75 MeV cm²/mg min.

Crystal Oscillator | 3.3V | CMOS | 5x7mm Gull Wing Leads | SmallSat-CubeSat

Mechanical SPECIFICATIONS

0.<u>110</u> max. 0.008 (2.80) 0.028 ±0.003 (0.72) 0.018±.003 0.060 ± 0.004 (0.46±0.08) (1.52 ± 0.08)

0.216 max


0.200 ± .008

(5.08 ± 0.2)

An external bypass capacitor 0.01µF is

dimensions:

inches / (mm)

Hi-Rel Design and Manufacture Proven High Shock Crystal Support ECCN - EAR 99 Customer Support & Service High-Shock & Vibration Configuration ■ Small Hi-Rel Package Manufactured in the USA ■ Mission Success | Life Options 6 Months to 5 Years Rise/Fall **Frequency Stability Vs. Temperature** Frequency Supply Symmetry Aging Time -55°C to -55°C to -40°C to -40°C to Range Current min / max per year +85°C @ 3.3V ±10% (tr/tf) max max 1/ +125°C +125°C +105°C (MHz) (mA) (nsec) (%) (ppm) (ppm) (ppm) (ppm) (ppm) CODE CODE CODE CODE CODE Α В C D 20 to 39.9 15 3 45/55 ±10 ±100 ±75 ±60 ±50 code 22 40 to 49.9 3 45/55 ±10 ±100 ±75 ±60 ±50 50 to 79.9 25 40/60 ±10 ±100 ±75 ±60 ±50 80 to 94.9 30 2 40/60 ±10 ±100 ±75 ±60 ±50 95 to 130 35 40/60 ±10 ±100 ±75 ±60 ±50

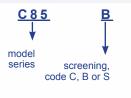
See reverse side for screening details

CMOS Output, 15 pF Load Output Voltage - Logic "0" is Vcc x 0.1 Vdc Output Voltage - Logic "1" is Vcc is 0.9 Vdc Start-up Time: 10 msec max

1/ Frequency Aging Limit

Standard

Max change over 30 days ±1.5 ppm Projected max change for 1 year after 30 days ±10 ppm


Please Contact Us for Specification Options
that are Outside of or beyond those
Shown in the Table Above

PIN
CONFIGURATION
* Enable, Logic 1 Disable, Logic 0
Terminate any unused leads, (they are not terminated internally).

Pin Number	Function
1	Ourput Enable (Tri-state)*
2	Ground (case)
3	Output
4	Supply V (Vcc)

How To ORDER

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

range

50M00000

output frequency

example:

C85B15B-50M00000

Pad 1,

ESD Symbol

Designed Specifically for Lower-cost Space Missions

Other Thru-hole Leaded 5x7 mm Ceramic SMD for Space, Please Inquire! New 5x3.2 Radiation Tolerant Oscillator for Space, Please Inquire!

creening- C, B & S OI				CODE		
Screening	Method Options:	С	В			
Non-Destruct Bond Pull	MIL-STD-883, Method 2023	•	•			
nternal Visual	MIL-STD-883, Method 2017	•	•			
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	•			
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•	•			
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)		•			
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max					
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1					
	MIL-STD-202, Method 112, Condition C, 111A		•			
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	•			
Electrical Test	Functional Test Only at +23°C	•	•			
Marking & Serialization	MIL-STD-1285	•	•			
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes		•			
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min		•			
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min	•				
nterim Electrical	Functional Test Only					
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min					
) Frequency stability is tested	ncy, output waveform, are tested at +23°C ±2°C over the specified temperature range; at both minimum of 5 temperature increments is by lot # and then serial #	•	•			
Radiography	MIL-STD-883, Method 2012					
Frequency Aging	MIL-PRF-55310, +70°C Condition					
Frequency/Temperature Stability	MIL-PRF-55310, Over temperature extremes, 20 points equally spaced					
External Visual & Mechanical	MIL-STD-883, Method 2009	•	•			

		-		
Environmental Environmental	Specification	Method	Condition	
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Rar
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis
Thermal Shock	MIL-STD-202	Method 107	Condition B	

Specification

MIL-STD-202

MIL-STD-202

MIL-STD-202

MIL-STD-883

MIL-STD-202

MIL-STD-883

MIL-STD-202

Method

Method 105

Method 210

Method 106

Method 1009

Method 211

Method 2003

Method 215

SmallSat | CubeSat

 $note: other\ options,\ screening\ levels\ and\ custom\ test\ plans\ available.$

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

Helpful & Relevant Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534 Hybrid Microcircuits, General Specification For
Test Method Standard, Electronic and Electrical Components
Test Methods and Procedures for Microelectronics
MIL-STD-1686 Electrostatic Discharge Control Program for Protection of
Electrical and Electronic Parts, Assemblies and Equipment

Materials

Resistance to Solvents

Environmental

Ambient Pressure

Moisture Resistance

Solderability

Resistance to Soldering Heat

Salt Atmosphere (corrosion)
Terminal Strength

- 1. Package Materials: Ceramic, Alumina 90% min
- 2. Pad Plating Material: Gold Plate 0.3 μm (12 μ inch) over 2 μm (80 μ inch) min. Nickel

Products for Space Applications

Condition

Condition C

Condition C

with 7B Sub-cycle

Test Condition D

Condition A (24 hrs)

Contact us for assistance with your **higher level specifications**. We will provide you with the technical support and the required documentation.

Issue 11_12192023

Ph. 714 373 8100 Fx. 714 373 8700